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ABSTRACT
BACKGROUND: Mood disorders (including major depressive disorder and bipolar disorder) affect 10% to 20% of the
population. They range from brief, mild episodes to severe, incapacitating conditions that markedly impact lives.
Multiple approaches have shown considerable sharing of risk factors across mood disorders despite their diagnostic
distinction.
METHODS: To clarify the sharedmolecular genetic basis ofmajor depressive disorder andbipolar disorder and to highlight
disorder-specific associations, we meta-analyzed data from the latest Psychiatric Genomics Consortium genome-wide
association studies of major depression (including data from 23andMe) and bipolar disorder, and an additional major
depressive disorder cohort from UK Biobank (total: 185,285 cases, 439,741 controls; nonoverlapping N = 609,424).
RESULTS: Seventy-three loci reached genome-wide significance in the meta-analysis, including 15 that are novel for
mood disorders. More loci from the Psychiatric Genomics Consortium analysis of major depression than from that for
bipolar disorder reached genome-wide significance. Genetic correlations revealed that type 2 bipolar disorder
correlates strongly with recurrent and single-episode major depressive disorder. Systems biology analyses highlight
both similarities and differences between the mood disorders, particularly in the mouse brain cell types implicated
by the expression patterns of associated genes. The mood disorders also differ in their genetic correlation with
educational attainment—the relationship is positive in bipolar disorder but negative in major depressive disorder.
CONCLUSIONS: The mood disorders share several genetic associations, and genetic studies of major depressive
disorder and bipolar disorder can be combined effectively to enable the discovery of variants not identified by studying
either disorder alone. However, we demonstrate several differences between these disorders. Analyzing subtypes of
major depressive disorder and bipolar disorder provides evidence for a genetic mood disorders spectrum.

Keywords: Affective disorders, Bipolar disorder, Genetic correlation, Genome-wide association study, Major
depressive disorder, Mood disorders
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Mood disorders affect 10% to 20% of the global population
across their lifetime, ranging from brief episodes to incapa-
citating conditions that markedly impact lives (1–4). Major
depressive disorder and bipolar disorder are the most common
forms of mood disorder, and they have been grouped together
since the publication of the DSM-III in 1980 (5). Although both
disorders are given dedicated chapters in the DSM-5, they
remain grouped as mood disorders in the ICD-11 (6,7).

Depressive episodes are common to major depressive
disorder and type 2 bipolar disorder, and they are usually
present in type 1 bipolar disorder (7). The bipolar disorders are
distinguished from major depressive disorder by the presence
of mania in type 1 bipolar disorder and hypomania in type 2
bipolar disorder (7). However, these distinctions are not
absolute—some individuals with major depressive disorder
develop bipolar disorder, and some endorse manic or
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hypomanic symptoms (8–10). Following a first depressive
episode, a nonremitting individual might develop bipolar dis-
order or recurrent major depressive disorder. Treatment
guidelines for these disorders differ (11,12). Identifying shared
and distinct genetic associations for major depressive disorder
and bipolar disorder could aid our understanding of these
diagnostic trajectories.

Twin studies suggest that 35% to 45% of variance in risk for
major depressive disorder, and65% to 70% for bipolar disorder,
is accounted for by additive genetic factors (13). These genetic
components are partially shared, with a twin genetic correlation
(rg) of approximately 65% and a common variant–based rg of
30% to 35% derived from genome-wide association study
(GWAS) results (14–17). Progress has been made in identifying
specific genetic variants that underlie genetic risk. Recently, the
Psychiatric Genomics Consortium (PGC) published the results
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of a GWAS of bipolar disorder that included more than 20,000
cases, with 30 genomic loci reaching genome-wide significance
(16). They also performed a GWAS of major depression that
included more than 135,000 individuals with major depressive
disorder and other definitions of depression, and found 44 loci
reaching genome-wide significance (15). The PGC GWAS of
major depression has since been combined with a broad
depression GWAS (see Supplemental Note in Supplement 1).

GWASs have identified statistical associations of genetic
loci with major depressive disorder and with bipolar disorder
individually, but no GWAS has explored the genetic relation-
ship between these disorders. In addition, both disorders
exhibit considerable clinical heterogeneity and can be sepa-
rated into subtypes. For example, the DSM-5 includes cate-
gories for type 1 and type 2 bipolar disorder, and for single-
episode and recurrent major depressive disorder (7). We
used the PGC analyses of major depression and bipolar dis-
order, along with analyses of formally defined major depressive
disorder from the UK Biobank, to explore 2 aims (18,19). First,
we sought to identify shared and distinct mood disorder ge-
netics by combining studies of major depressive disorder and
bipolar disorder. We then explored the genetic relationship of
mood disorders to traits from the wider GWAS literature.
Second, we assessed genetic similarities and differences be-
tween subtypes of bipolar disorder (from the PGC) and major
depressive disorder (from the UK Biobank) through compari-
son of genetic correlations and polygenic risk scores.

METHODS AND MATERIALS

Participants

Our primary aim was to combine analyses of bipolar disorder
and major depression to examine the shared and distinct ge-
netics of these disorders. Full descriptions of each study and its
composite cohorts are provided in previous articles (15,16,19).
Brief descriptions are provided in Supplement 1. Summary
statistics were derived from participants of Western European
ancestries, and unless otherwise specified are available at
https://www.med.unc.edu/pgc/results-and-downloads.

Major depression data were drawn from the full cohort re-
ported by Wray et al. (PGC MDD) (135,458 cases, 344,901
controls) (15). These included data from 23andMe (20), access
to which requires a data transfer agreement; consequently, the
data analyzed here differ from the publicly available summary
statistics. Data for bipolar disorder were drawn from the dis-
covery analysis previously reported (PGC BD) (20,352 cases,
31,358 controls), not including replication results (16).

Second, we wished to examine genetic correlations be-
tween mood disorder subtypes. Summary statistics were
available for the primary bipolar disorder subtypes, type 1 bi-
polar disorder (BD1) (14,879 cases, 30,992 controls) and type 2
bipolar disorder (BD2) (3421 cases, 22,155 controls), and for
schizoaffective bipolar disorder (SAB) (977 cases, 8690 con-
trols), a mood disorder that includes psychotic symptoms.
Controls were shared across these subtype analyses.

Subtype GWASs were not available from PGC MDD.
Instead, a major depressive disorder cohort was derived from
the online mental health questionnaire in the UK Biobank (UKB
MDD) (29,475 cases, 63,482 controls) (resource 22 on http://
biobank.ctsu.ox.ac.uk) (18). The definition of major depressive
170 Biological Psychiatry July 15, 2020; 88:169–184 www.sobp.org/jo
disorder in this cohort is based on that in the DSM-5, as
described in full elsewhere (18) and in Table S1 in Supplement 2
(7). Individuals meeting criteria for major depressive disorder
were classified with recurrent major depressive disorder if they
reported multiple depressed periods across their lifetime
(rMDD) (N = 17,451 cases) and single-episodemajor depressive
disorder otherwise (sMDD) (N = 12,024 cases) (Table S1 in
Supplement 2). Individuals reporting symptoms of depression
but not meeting case criteria were excluded from the UKBMDD
cohort but were used as a "subthreshold depression" subtype
(subMDD) to examine the continuity of genetic associations
with major depressive disorder below clinical thresholds (N =
21,596 cases). All subtypes were analyzed with all controls.
Details on the quality control and analysis of the UK Biobank
phenotypes are provided in Supplement 1.

Meta-analysis of GWAS Data

We meta-analyzed PGC MDD and UKB MDD cohorts to obtain
a single major depressive disorder GWAS (combined MDD
cohort). We meta-analyzed the combined MDD cohort with
PGC BD, comparing mood disorder cases with controls
(MOOD). Further meta-analyses were performed between the
PGC MDD cohort and each mood disorder subtype to assess
the relative increase in variant discovery when adding different
mood disorder definitions to the PGC MDD study
(Supplemental Methods in Supplement 1).

Summary statistics were limited to common variants (minor
allele frequency . 0.05) (Supplemental Methods in
Supplement 1) genotyped or imputed with high confidence
(INFO score . 0.6) in all studies. Controls were shared be-
tween PGC MDD and PGC BD studies, and (because the PGC
MDD study included summary data) the extent of this overlap
was unknown. Meta-analyses were therefore performed in
METACARPA, which controls for sample overlap of unknown
extent between studies using the variance–covariance matrix
of the observed effect sizes at each variant, weighted by the
sample sizes (21,22). METACARPA adjusted adequately for
known overlap between cohorts (Supplemental Methods in
Supplement 1). For later analyses (particularly linkage
disequilibrium score regression [LDSC]), we used as the
sample size a "nonoverlapping N" estimated for each meta-
analysis (Supplemental Methods in Supplement 1). The defi-
nition, annotation, and visualization of each meta-analysis are
described in Supplemental Methods in Supplement 1.

Sensitivity Analysis Using Downsampled
PGC MDD Data

Cross-trait meta-analyses may be biased if the power of the
composite analyses differs substantially (23,24). The mean chi-
square of the combined MDD cohort [1.7] exceeded that of
PGC BD [1.39], suggesting that this bias may affect our results
(Table S2 in Supplement 2). We therefore repeated our ana-
lyses, meta-analyzing UKB MDD with summary statistics for
PGC MDD that did not include participants from 23andMe nor
the UK Biobank (mean chi-square = 1.35). All analyses were
performed on the full and the downsampled analyses, with the
exception of generalized summary-based Mendelian random-
ization (GSMR) analyses. Full results of the downsampled an-
alyses are described in Supplemental Results in Supplement 1.
urnal
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Estimation of Single Nucleotide Polymorphism–

Based Heritability and Genetic Correlations With
Published GWASs

Single nucleotide polymorphism (SNP)–based heritability was
assessed using LDSC (25). SNP-based heritability estimates
were transformed to the liability scale, assuming population
prevalences of 15% for the combined MDD cohort, 1% for the
PGC BD cohort, and 16% for the MOOD cohort, and lower and
upper bounds of these prevalences for comparison
(Supplemental Methods in Supplement 1). LDSC separates
genome-wide inflation into a component resulting from poly-
genicity and a component resulting from confounding (25).
Inflation not due to polygenicity was quantified as (intercept 2
1)/(mean observed c2 2 1) (26). Genetic correlations were
calculated in LDSC between each analysis and 414 traits
curated from published GWASs. Local estimates of SNP-
based heritability and genetic covariance were obtained us-
ing the Heritability Estimator From Summary Statistics version
0.5.4b (Supplemental Methods and Supplemental Results in
Supplement 1) (27,28).

Genetic Correlations Between Subtype Analyses

To assess the structure of genetic correlations within the mood
disorders, SNP-based heritabilities and genetic correlations
were calculated in LDSC between bipolar disorder subtypes
(BD1, BD2, and SAB), and major depressive disorder subtypes
(rMDD, sMDD, and subMDD). Putative differences between
genetic correlations were identified using a z test (p , .05) and
formally tested by applying a block jackknife with Bonferroni
correction for significance (p , .00083) (Supplemental
Methods in Supplement 1). Differences between the genetic
correlations of the PGC MDD cohort and each bipolar disorder
subtype, and between the PGC BD cohort and each major
depressive disorder subtype, were also tested (Bonferroni
correction for significance, p , .0083). Genetic correlations
were hierarchically clustered using the gplots package in R,
version 1.4.1 (29,30). Hierarchical clustering was performed
using just the subtypes and including results from 6 external
GWASs relevant to mood disorders (Supplemental Methods in
Supplement 1) (31–35). To validate our conclusion of a genetic
mood disorder spectrum, we performed principal component
analysis of the genetic correlation matrix including the 6
external GWASs (Supplemental Methods and Results in
Supplement 1).

Association of PGC BD Polygenic Risk Scores With
MDD Subtypes

Polygenic risk score analyses were performed using PRSice2
to assess whether the rMDD cohort was genetically more
similar to the PGC BD cohort than was the sMDD or subMDD
cohort (Supplemental Methods in Supplement 1) (36).

Genewise, Gene-Set, and Tissue and Single-Cell
Enrichment Analyses

For all analyses, the p values of SNPs in gene regions (defined
as Ensembl gene locations) were combined as the aggregate
of the mean and smallest p value to yield genewise p values,
using MAGMA version 1.06 (Supplemental Methods and
Biological
Results in Supplement 1) (37). Gene-set analysis was per-
formed in MAGMA (Supplemental Methods and Results in
Supplement 1). Further analyses were performed to assess the
enrichment of associated genes with expression-specificity
profiles from tissues (Genotype-Tissue Expression project,
version 7) and broadly defined (level 1) and narrowly defined
(level 2) mouse brain cell types (38,39). Analyses were per-
formed in MAGMA following previously described methods
with minor modifications, with Bonferroni correction for sig-
nificance (Supplemental Methods in Supplement 1) (38).
Similar analyses can be performed in LDSC-SEG—we report
MAGMA results, which reflect specificity of expression across
the range, whereas LDSC-SEG compares the top 10% of the
range with the remainder (40). Results using LDSC are included
in Tables S9–S11 in Supplement 2.

Mendelian Randomization (GSMR)

Bidirectional Mendelian randomization analyses were per-
formed using the GSMR option in GCTA to allow exploratory
inference of the causal direction of known relationships be-
tween mood disorder traits and other traits (41,42). Specif-
ically, we explored the relationships between the mood
disorder analyses (MOOD, combined MDD, and PGC BD) and
schizophrenia, intelligence, educational attainment, body mass
index (BMI), and coronary artery disease (Supplemental
Methods in Supplement 1) (32,43–46). These traits were pre-
viously examined in the PGC major depression GWAS—we
additionally tested intelligence following the results of our ge-
netic correlation analyses (15).

Conditional and Reversed-Effect Analyses

Additional analyses were performed to identify shared and
distinct mood disorder loci, using mtCOJO, an extension of
GSMR (Supplemental Methods in Supplement 1) (41,42). An-
alyses were performed on combined MDD conditional on PGC
BD, and on PGC BD conditional on combined MDD
(Supplemental Results in Supplement 1). To identify loci with
opposite directions of effect between combined MDD and
PGC BD, the MOODmeta-analysis was repeated with reversed
direction of effects for PGC BD (Supplemental Methods and
Results in Supplement 1).

RESULTS

Evidence for Confounding in Meta-analyses

Meta-analysis results were assessed for genome-wide infla-
tion of test statistics using LDSC (25). Generally, the LDSC
intercept was significantly .1 (1.00–1.06), which has previ-
ously been interpreted as confounding (Table S2 in
Supplement 2). However, such inflation can occur in large
cohorts without confounding (47). Estimates of inflation not
due to polygenicity were small in all meta-analyses (4%–7%)
(Table S2 in Supplement 2).

Combined MOOD Meta-analysis

We meta-analyzed the PGC MDD, PGC BD, and UKB MDD
cohorts (MOOD cohort, cases = 185,285, controls = 439,741,
nonoverlapping N = 609,424). In all, 73 loci reached genome-
wide significance, of which 55 were also seen in the meta-
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Table 1. Loci of Genome-wide Significance in the MOOD Meta-analysisa

Locus Chr BP Index SNP A1 A2 OR SE p Value Previous Report

1 1 37192741 rs1002656 T C 0.97 0.005 2.71 3 10211 DO, N

2 1 72837239 rs7531118 T C 0.96 0.004 1.05 3 10216 D, DO, S, O

4 1 80795989 rs6667297 A G 0.97 0.005 5.86 3 10211 D, DO

5 1 90796053 rs4261101 A G 0.97 0.005 1.78 3 1028 D

6 1 175913828 rs10913112 T C 0.97 0.005 1.46 3 10210 DO, O

7 1 177370033 rs16851203 T C 0.96 0.007 2.38 3 1029 DO, S, O

9 2 22582968 rs61533748 T C 0.97 0.004 3.84 3 10211 DO, N

10 2 57987593 rs11682175 T C 0.97 0.004 2.18 3 10211 D, DO, BS, N, S, O

11 2 157111313 rs1226412 T C 1.03 0.005 1.27 3 1028 D, DO, N, O

12 2 198807015 rs1518367 A T 0.97 0.005 1.18 3 1028 BS, S, O

13 3 108148557 rs1531188 T C 0.96 0.006 1.61 3 1029 O

14 3 158107180 rs7430565 A G 0.97 0.004 2.30 3 10211 D, DO, N, O

16 4 42047778 rs34215985 C G 0.97 0.006 1.72 3 10210 D, DO, N

17 5 77709430 rs4529173 T C 0.97 0.005 4.29 3 1029 O

18 5 88002653 rs447801 T C 1.03 0.004 2.29 3 10210 D, DO, N, O

19 5 92995013 rs71639293 A G 1.03 0.005 5.85 3 1029 DO, N

20 5 103904226 rs12658032 A G 1.04 0.005 2.19 3 10216 D, DO, N, O

21 5 106603482 rs55993664 A C 0.97 0.006 1.87 3 1028 Novel locus

22 5 124251883 rs116755193 T C 0.97 0.005 1.47 3 10210 D, O

23 5 164523472 rs11135349 A C 0.97 0.004 2.96 3 10211 D, DO, N

24 5 166992078 rs4869056 A G 0.97 0.005 5.21 3 1029 D

25 6 28673998 rs145410455 A G 0.94 0.007 7.17 3 10218 D, DO, BO, BS, DS, N, S, O

26 6 101339400 rs7771570 T C 0.97 0.004 9.68 3 10210 DO, N, O

27 6 105365891 rs1933802 C G 0.98 0.004 1.05 3 1028 DO, S, O

28 7 12267221 rs4721057 A G 0.97 0.004 7.31 3 10211 D, DO, N, O

29 7 24826589 rs79879286 C G 1.04 0.006 1.97 3 10211 B, BS, DO, S

30 7 82514089 rs34866621 T C 1.03 0.005 2.21 3 1028 DO, O

31 7 109099919 rs58104186 A G 1.03 0.004 7.12 3 1029 D, DO

34 9 11379630 rs10959753 T C 0.96 0.005 1.45 3 10213 D, DO, N, O

35 9 37207269 rs4526442 T C 0.96 0.006 7.97 3 10211 DO, O

36 9 81413414 rs11137850 A G 1.03 0.005 1.25 3 1028 Novel locus

38 9 119733380 rs10759881 A C 1.03 0.005 8.56 3 1029 D, DO

40 9 122664468 rs10818400 T G 0.98 0.004 1.29 3 1028 N

41 9 126682068 rs7029033 T C 1.04 0.008 2.61 3 1028 D, DO, O

42 10 104684544 rs78821730 A G 0.96 0.007 2.95 3 1028 N, BS, S, O

43 10 106563924 rs61867293 T C 0.96 0.005 5.64 3 10212 D, DO, N, O

44 11 16293680 rs977509 T C 0.97 0.005 1.19 3 1028 DO, N, O

45 11 31850105 rs1806153 T G 1.03 0.005 2.81 3 1029 D, DO, N, O

46 11 32765866 rs143864773 T C 1.04 0.008 1.70 3 1028 Novel locus

47 11 61557803 rs102275 T C 0.97 0.005 5.04 3 10211 B, DO, BO, O

48 11 63632673 rs10792422 T G 0.98 0.004 2.18 3 1028 O

49 11 88743208 rs4753209 A T 0.97 0.004 4.15 3 1029 DO, N, O

50 11 99268617 rs1504721 A C 0.98 0.004 2.24 3 1028 O

51 11 113392994 rs2514218 T C 0.97 0.005 3.22 3 10210 DO, BS, N, S, O

52 12 2344644 rs769087 A G 1.03 0.005 3.27 3 1028 B, BD, BO, DS, BS, S, O

53 12 23947737 rs4074723 A C 0.97 0.004 3.18 3 1029 D, DO, N, O

54 12 121186246 rs58235352 A G 0.95 0.009 1.64 3 10210 DO, O

55 12 121907336 rs7962128 A G 1.02 0.004 3.63 3 1028 Novel locus

56 13 44327799 rs4143229 A C 0.95 0.008 2.73 3 10210 D

57 13 53625781 rs12552 A G 1.04 0.004 1.25 3 10223 D, DO, O

58 14 42074726 rs61990288 A G 0.97 0.004 2.29 3 10210 D, DO, O

60 14 64686207 rs915057 A G 0.98 0.004 1.92 3 1028 D, DO, O

61 14 75130235 rs1045430 T G 0.97 0.004 9.83 3 10211 D, DO, N, O
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Table 1. Continued

Locus Chr BP Index SNP A1 A2 OR SE p Value Previous Report

62 14 104017953 rs10149470 A G 0.97 0.004 1.15 3 10210 D, DS, DO, BS, S, O

63 15 36355868 rs1828385 A C 0.97 0.004 1.15 3 1028 Novel locus

64 15 37643831 rs8037355 T C 0.97 0.004 4.09 3 10215 D, DO, O

65 16 6310645 rs8063603 A G 0.97 0.005 5.36 3 10211 D, DO

66 16 7667332 rs11077206 C G 1.03 0.004 5.49 3 10210 D, DO, N, O

67 16 13038723 rs12935276 T G 0.97 0.005 4.75 3 10210 D, DO, N, O

68 16 13750257 rs7403810 T G 1.03 0.005 7.52 3 10211 DO, BS, S, O

69 16 72214276 rs11643192 A C 1.03 0.004 1.46 3 10211 D, O

70 17 27363750 rs75581564 A G 1.04 0.006 2.47 3 10210 D, DO, O

71 18 31349072 rs4534926 C G 1.03 0.004 9.14 3 1029 DO, N

72 18 36883737 rs62099069 A T 0.97 0.004 9.52 3 10210 D, O

73 18 42260348 rs117763335 T C 0.97 0.005 1.33 3 1028 O

74 18 50614732 rs11663393 A G 1.03 0.004 1.56 3 10210 D, DO, N, O

75 18 52517906 rs1833288 A G 1.03 0.005 4.54 3 1028 D, DS, DO, N, S, O

76 18 53101598 rs12958048 A G 1.04 0.005 4.86 3 10214 D, DO, BS, N, S, O

77 19 30939989 rs33431 T C 1.02 0.004 4.04 3 1028 DO, O

78 20 45841052 rs910187 A G 0.97 0.005 3.09 3 1029 DO, O

79 22 41621714 rs2179744 A G 1.03 0.005 3.83 3 10212 D, B, DO, BS, N, S, O

80 22 42815358 rs7288411 A G 1.03 0.005 3.86 3 1028 Novel locus

81 22 50679436 rs113872034 A G 0.96 0.006 1.10 3 1029 O

A1, effect allele; A2, noneffect allele; B, locus previously implicated in Psychiatric Genomics Consortium bipolar disorder study; BD, locus
previously implicated in previous combined studies of bipolar disorder and major depressive disorder; BO, locus previously implicated in other
studies of bipolar disorder; BP, base position; BS, locus implicated in previous combined studies of bipolar disorder and schizophrenia; Chr,
chromosome; D, locus previously implicated in Psychiatric Genomics Consortium major depressive disorder study; DO, locus previously
implicated in other studies of major depressive disorder or depressive symptoms; DS, locus implicated in previous combined studies of major
depressive disorder and schizophrenia; Locus, shared locus number for annotation (Table S3 in Supplement 2); MOOD, combined major
depressive disorder cohorts with Psychiatric Genomics Consortium bipolar disorder cohort; N, locus previously implicated in studies of
neuroticism; O, locus previously implicated in other studies (see Table S4 in Supplement 2); OR, odds ratio; S, locus previously implicated in
studies of schizophrenia; SE, standard error; SNP, single nucleotide polymorphism.

aGenome-wide significance p , 5 3 1028.
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analysis of PGC MDD and UKB MDD (combined MDD cohort)
(Table 1, Table S3 in Supplement 2, and Figures S1–S8 in
Supplement 1). Of the 44 PGC MDD loci, 39 reached genome-
wide significance in the MOOD analysis. In comparison, only 4
of the 19 PGC BD loci reached genome-wide significance in
the MOOD analysis (Table S3 in Supplement 2). MOOD loci
overlapped considerably with those found in previous studies
of depression and depressive symptoms (51 of 73 loci)
(20,23,48–52), bipolar disorder (3 of 73 loci) (53–56), neuroti-
cism (32 of 73 loci) (23,57–59), and schizophrenia (15 of 73 loci)
(32,60), although there is overlap between the participants in
the MOOD cohort and participants in many of these studies.
Locus 52 (chromosome 12) passed genome-wide significance
in a previous meta-analysis of broad depression and bipolar
disorder, although the 2 other loci from this study did not
replicate (51). Of the 73 associations, 6 loci are entirely novel (p
. 5 3 1028 in previous studies of all phenotypes) (Table 1;
Table S4 in Supplement 2).

Downsampled MOOD data (cases = 95,481, controls =
287,932, nonoverlapping N = 280,214) showed increased
similarity to PGC BD data compared with MOOD data but
remained more similar to PGC MDD data. Nineteen loci
reached genome-wide significance in the analysis of down-
sampled MOOD data, including 9 (20%) from the PGC MDD
analysis, compared with 2 (11%) reported in the PGC BD
Biological
findings (Table S3 in Supplement 2). Of 19 loci, 17 were also
observed in the MOOD analysis. Of the 2 loci not observed in
the MOOD study, 1 passed genome-wide significance in the
PGC BD study.
SNP-Based Heritability and Genetic Correlations

The estimate of SNP-based heritability for the MOOD cohort
(8.8%) was closer to that for the PGC MDD cohort (8.8%) than
for the PGC BD cohort (20%). Significant genetic correlations
between the MOOD cohort and other traits included psychi-
atric and behavioral, reproductive, cardiometabolic, and soci-
odemographic traits (Figure 1 and Table S5 in Supplement 2).
Genetic correlations with psychiatric and behavioral traits are
consistently observed across psychiatric traits (17,61). The
genetic correlation between the MOOD cohort and educational
attainment was 20.06 (p = .004), intermediate between the
results of the combined MDD analysis (rg = 2.11) and those of
the PGC BD analysis (rg = .19) (Table S6 in Supplement 2).
Notably, the genetic correlation with intelligence was not sig-
nificant in any of the 3 analyses (p . 1.27 3 1024). However,
sensitivity analyses (see below) indicated that including
23andMe data in the PGC MDD analysis obscured a negative
genetic correlation with intelligence.
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Figure 1. Selected genetic correlations of (A) psychiatric traits
and (B) other traits with the main meta-analysis (MOOD cohort), the
separate mood disorder analyses (combined major depressive
disorder cohorts and Psychiatric Genomics Consortium [PGC] bi-
polar disorder cohort), and the downsampled analyses (down-
sampled MOOD cohort, downsampled major depressive disorder
cohort). Full genetic correlation results are provided in Table S5 in
Supplement 2. GIANT, The Genetic Investigation of Anthropometric
Traits consortium; iPSYCH, Lundbeck Foundation Initiative for
Integrative Psychiatric Research.
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The SNP-based heritability of downsampled MOOD data
from LDSC was 11%, closer to PGC MDD results than to PGC
BD results (Table S2 in Supplement 2). Genetic correlations
varied (Tables S5 and S7 in Supplement 2), with some more
similar to those of the PGC BD cohort (schizophrenia: down-
sampled rg = .61, combined MDD rg = .35, PGC BD rg = .7) and
others more similar to those of the combined MDD cohort
(attention-deficit/hyperactivity disorder: downsampled rg = .48,
combined MDD rg = .45, PGC BD rg = .14). The genetic cor-
relation with intelligence was significant (rg = 2.13, p = 5 3

1027), because the excluded 23andMe depression cohort has
a positive genetic correlation with intelligence (rg = .06, p = .01).
The greater genetic correlation of the MOOD cohort with
the combined MDD cohort (rg = .98) compared with the
PGC BD cohort (rg = .55) persisted when we compared the
downsampled MOOD cohort with the combined MDD cohort
(rg = .85) and the PGC BD cohort (rg = .75) (Table S6 in
Supplement 2).

Relationship Between Mood Disorder Subtypes

Analyses were performed using GWAS data from subtypes of
bipolar disorder (BD1, BD2, and SAB) and major depressive
disorder (rMDD, sMDD, and subMDD). SNP-based heritability
for the subtypes were 8% for subMDD and sMDD, 10% for
BD2, 12% for rMDD, 22% for BD1, and 29% for SAB (Figure 2
and Table S2 in Supplement 2).

The major depressive disorder subtypes were strongly and
significantly genetically correlated (rg = .9–.94, prg = 0 ,

.00083). These correlations did not differ significantly from 1 (all
prg = 1 . .3), nor from each other (all pDrg = 0 . .5) (Figure 2 and
Table S8 in Supplement 2). BD1 and SAB were strongly
correlated (rg = .77, prg = 0 = 6 3 10213, prg = 1 = .03), as were
BD1 and BD2 (rg = .86, prg = 0 = 3 3 10216, prg = 1 = .2).
However, BD2 was not significantly correlated with SAB (rg =
.22, prg = 0 = .02).
Figure 2. Single nucleotide polymorphism (SNP)–based heritability estimates
order. Points represent SNP-based heritability estimates. Lines represent 95%
Table S2 in Supplement 2.
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In hierarchical clustering, BD2 clustered with the major
depressive disorder subtypes rather than the bipolar disorder
subtypes. The strength of correlation between BD2 and BD1
did not differ from that between BD2 and rMDD (rg = .68, prg =

0 = 3 3 1028, prg = 1 = .01), following multiple testing correction
(Drg = .18, p = .02). Overall, these results suggest that a
spectrum of genetic relationships exist between major
depressive disorder and bipolar disorder, with type 2 bipolar
disorder bridging the two disorders (Figure 3 and Figure S9 in
Supplement 1). This spectrum remained when 6 external
phenotypes were added, and it was supported by results from
principal component analysis (Supplemental Results and
Figure S10 in Supplement 1).

Polygenic risk score analyses showed that individuals with
high polygenic risk scores for bipolar disorder were more likely
to report recurrent major depressive disorder than single-
episode major depressive disorder, and more likely to report
single-episode major depressive disorder than subthreshold
depression (Supplemental Results in Supplement 1).

Tissue and Cell-Type Specificity Analyses

The results of genewise and gene-set analyses are described
in Supplemental Results in Supplement 1. The tissue speci-
ficity of associated genes differed minimally between the an-
alyses (Table S9 in Supplement 2). All brain regions were
significantly enriched in all analyses, and the pituitary was also
enriched in the combined MDD and PGC BD cohorts (p ,

.000943, Bonferroni correction for 53 regions) (Table S9 in
Supplement 2). Results from downsampled MOOD and
downsampled MDD analyses were generally consistent with
those of the main analyses, except spinal cord was not
enriched in either, nor was the cordate enriched in the down-
sampled MDD analysis.

In contrast, cell type enrichments differed between the
combined MDD and PGC BD cohorts (Figure 4 and Tables S10
for the subtypes of bipolar disorder and subtypes of major depressive dis-
confidence intervals. Full SNP-based heritability results are provided in
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Figure 3. Genetic correlations across the mood disorder spectrum. Labeled arrows show genetic correlations that are significantly different from 0. Solid
arrows represent genetic correlations that are not significantly different from 1 (p , .00333, Bonferroni correction for 15 tests). Full results are provided in
Table S8 in Supplement 2.
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and S11 in Supplement 2). Genes associated in the PGC BD
cohort were enriched for expression in pyramidal cells from the
CA1 region of the hippocampus and the somatosensory cortex
and in striatal interneurons. None of these enrichments was
significant in the combined MDD analysis. Genes associated
only in the combined MDD cohort were significantly enriched
for expression in neuroblasts and dopaminergic neurons from
adult mice. Additional cell types (dopaminergic neuroblasts;
dopaminergic, gamma-aminobutyric acidergic, and midbrain
nucleus neurons from embryonic mice; interneurons; and
medium spiny neurons) were enriched in both combined MDD
and PGC BD cohorts, but the rank and strength of enrichment
differed, most notably for medium spiny neurons. The general
pattern of differences persisted when comparing the PGC BD
analysis with the downsampled MDD analysis, although genes
associated in the downsampled MDD cohort were not
enriched for expression in adult dopaminergic neurons, em-
bryonic midbrain nucleus neurons, interneurons, or medium
spiny neurons (Figure S11 in Supplement 1).
Shared and Distinct Relationships With Mood
Disorders and Inferred Causality

Bidirectional Mendelian randomization was used to investigate
previously described relationships between mood disorder
phenotypes (combined MDD cohort and PGC BD cohort)
and external traits: schizophrenia, educational attainment,
intelligence, BMI, and CAD (Figure 5 and Table S12 in
Supplement 2). Associations with the PGC BD cohort should
be interpreted cautiously, as only 19 loci reached genome-
wide significance, several of which were removed as poten-
tially pleiotropic in the analyses below.

Positive bidirectional relationships were observed between
combined MDD, PGC BD, and schizophrenia. This finding is
consistent with psychiatric disorders causing further psychi-
atric disorders or being correlated with other causal risk fac-
tors, including (but not limited to) a shared genetic basis.

Educational years were found to have a negative bidirec-
tional relationship with combined MDD but a positive bidirec-
tional relationship with PGC BD (albeit with only nominal
176 Biological Psychiatry July 15, 2020; 88:169–184 www.sobp.org/jo
significance from PGC BD to educational years). In contrast,
no significant relationship was observed between mood phe-
notypes and intelligence. This finding is consistent with
differing causal roles of education (or its correlates) on the
mood disorders, with a weaker reciprocal effect of the mood
disorders altering the length of education.

A positive association was seen between BMI and the
combined MDD cohort but not from the combined MDD cohort
to BMI. In contrast, only a nominally significant negative rela-
tionship was seen from the PGC BD cohort to BMI. A positive
association was observed from the combined MDD cohort to
CAD; no relationship was observed between CAD and the PGC
BD cohort.
DISCUSSION

We identified 73 genetic loci by meta-analyzing cohorts of
major depressive disorder and bipolar disorder, including 15
loci novel to mood disorders. Our mood disorders meta-
analysis results (MOOD cohort) are more like our major
depressive disorder analysis (combined MDD cohort) than like
our bipolar disorder analysis (PGC BD cohort). Partly, this
finding results from the greater power of the major depressive
disorder analysis compared with that of the bipolar disorder
analysis. Nevertheless, genetic associations from our sensi-
tivity analysis with equivalently powered cohorts (using
downsampled MDD instead of combined MDD data) still
showed a greater similarity to associations from major
depressive disorder rather than bipolar disorder.

This finding may reflect a complex genetic architecture in
bipolar disorder, wherein one set of variants may be associ-
ated more with manic symptoms and another set with
depressive symptoms. Variants associated more with mania
may have higher effect sizes, detectable at current bipolar
disorder GWAS sample sizes, and may not be strongly asso-
ciated with major depressive disorder. These differences could
contribute to the higher heritability of bipolar disorder
compared with major depressive disorder and would be
consistent with reports that most of the genetic variance for
mania is not shared with depression (13,14). Meta-analysis of
urnal
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Figure 4. Cell-type expression specificity of genes associated with bipolar disorder (Psychiatric Genomics Consortium bipolar disorder study, left panel) and
major depressive disorder (combined major depressive disorder studies, right panel). Black vertical lines represent significant enrichment (p , .002, Bonferroni
correction for 24 cell types). See Table S10 in Supplement 2 for full results. GABAergic, gamma-aminobutyric acidergic; SS, somatosensory cortex.
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bipolar disorder and major depressive disorder cohorts would
support variants associated more with depression but not
those associated with mania. This is consistent with our find-
ings, and with depressive symptoms being both the unifying
feature of the mood disorders and the core feature of major
depressive disorder.

We examined the genetic relationship between mood dis-
order subtypes, including adding relevant external traits for
context (Supplemental Results in Supplement 1). Type 2 bi-
polar disorder showed greater genetic similarity to major
depressive disorder compared with type 1 bipolar disorder,
mirroring similar findings from polygenic risk scores analyses
(16,56). Individuals with high polygenic risk scores for bipolar
disorder were more likely to report recurrent major depressive
disorder than single-episode major depressive disorder.
However, the genetic correlation of bipolar disorder with
recurrent major depressive disorder was not significantly
greater than that with single-episode major depressive disor-
der. This finding might reflect the difference in power between
these methods. Genetic correlations between mood disorder
subtypes support a genetic mood spectrum, with the
schizophrenia-like type 1 bipolar disorder and schizoaffective
bipolar disorder at one pole and the depressive disorders at
the other, with type 2 bipolar disorder occupying an interme-
diate position.
Biological
Conditional and reversed-effect analyses (Supplemental
Results in Supplement 1) suggest that few of the loci we iden-
tified are disorder specific. Nonetheless, we observed some
genetic differences between the mood disorders. The expres-
sion specificity of associated genes in mouse brain cell types
differed between bipolar disorder and major depressive disor-
der. Cell typesmore associated with bipolar disorder (pyramidal
neurons and striatal interneurons) were also enriched in ana-
lyses of schizophrenia (38). Cell types more associated in major
depressive disorder (neuroblasts, adult dopaminergic neurons,
embryonic gamma-aminobutyric acidergic neurons) had
weaker enrichments in schizophrenia but were enriched in an-
alyses of neuroticism (57). The higher rank of serotonergic
neurons in major depressive disorder compared with that in
bipolar disorder is striking given the use of drugs targeting the
serotonergic system in treating depression (62). Nevertheless,
cell-type enrichment analyses require cautious interpretation,
especially given the use of nonhuman reference data (38,63).

We explored potential causal relationships between the
mood disorders and other traits using Mendelian randomiza-
tion. Interpreting these analyses is challenging, especially for
complex traits, when the ascertainment of cases varies, and
when few ( ,20) variants are used as instruments (as in the
PGC BD and downsampled analyses presented) (41,64,65).
Mood disorders demonstrate considerable heterogeneity,
Psychiatry July 15, 2020; 88:169–184 www.sobp.org/journal 177
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Figure 5. Generalized summary-basedMendelian randomization results from analyses with the main meta-analysis (MOOD), and the major depressive disorder
and bipolar disorder analyses (combined major depressive disorder [combined MDD] cohort and Psychiatric Genomics Consortium bipolar disorder [PGC BD]
cohort). External traits are coronary artery disease (CAD), educational attainment (EDU), bodymass index (BMI), and schizophrenia (SCZ). b values are on the scale of
the outcome genome-wide association study (logit for binary traits, phenotype scale for continuous). *p, .004 (Bonferroni correction for 2-way comparisons with 6
external traits). For figure data, including the number of nonpleiotropic single nucleotide polymorphisms included in each instrument, see Table S12 in Supplement 2.
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potentially confounding the results of Mendelian randomiza-
tion. That said, our results are consistent with a bidirectional
influence of educational attainment on risk for mood disorders
(and vice versa), with different directions of effect in major
depressive disorder and bipolar disorder. We found no signif-
icant relationship between intelligence and either mood dis-
order. We also find results consistent with major depressive
disorder increasing the risk for coronary artery disease in a
relatively well-powered analysis. This mirrors epidemiological
findings, although the mechanism remains unclear (66).

Despite the presence of depressive episodes, the mood
disorders are diagnostically distinct, with differing
epidemiology—for example, more women than men experi-
ence major depressive disorder, whereas diagnoses of bipolar
disorder are roughly equal between the sexes (3). Differences
in our genetic results between major depressive disorder and
bipolar disorder may result from epidemiological heterogeneity
rather than distinct biological mechanisms (67). Deeper phe-
notyping of GWAS datasets is ongoing, and such work will
enable the effect of such confounding factors to be estimated
in future studies (68).

We extend previous findings showing genetic continuity
across the mood disorders (15–17,56). Combined mood dis-
order analyses may increase variant discovery, as well as the
discovery of shared and distinct neurobiological gene sets and
cell types. Our results indicate some genetic differences be-
tween major depressive disorder and bipolar disorder,
including opposite bidirectional relationships of each with
educational attainment, a possible influence of major depres-
sive disorder on coronary artery disease risk, and differing
mouse brain cell types implicated by the enrichment patterns
of associated genes in each disorder. Finally, our data are
consistent with a genetic mood disorder spectrum with
separate clusters for type 1 bipolar disorder and for depressive
disorders, linked by type 2 bipolar disorder, and with depres-
sion as the common symptom. The identification of specific
sets of genetic variants differentially associated with depres-
sion and with mania remains an aim for future research.
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